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The solution of the many-body Schrödinger equation using an adiabatic treatment of the hyperradius is
generalized to treat two components of a hyperspherical vector adiabatically. This treatment has advantages
in certain physical situations, such as the description of a degenerate Fermi gas or Bose-Einstein condensate
in an anisotropic trapping potential. A first application to the zero-temperature anisotropic Fermi gas is compared
with predictions of the Hartree-Fock method.

The many-fermion problem with tunable s-wave interactions
continues to generate extensive theoretical and experimental
interest. The two-body physics of the Fano-Feshbach resonance is
crucial in this system for controlling the s-wave scattering length,
a. By using such a resonance, the mean-field interaction strength
can be tuned through a wide range of values ranging from attractive
(a < 0) to repulsive (a > 0). It was suggested by Leggett in 19801

and later by others2-4 that this system provides a unique opportunity
to study the crossover behavior between Bardeen-Cooper-
Schrieffer (BCS) type superfluidity, caused by momentum-cor-
related pairs of fermions, to a Bose-Einstein condensate (BEC)
of diatomic molecules. Interestingly, this connection between two
different types of superfluidity is predicted to happen smoothly,
without a phase transition. Since these predictions were made long
ago, the experimental realization of this crossover has been
achieved,5-10 and theoretical descriptions of the strongly interacting
regime abound, from quantum Monte Carlo treatments11,12 to
extensions of the BCS wave function into the unitarity regime of
very large magnitude scattering lengths.13-16

Most existing theoretical studies of these degenerate Fermi
gases (DFGs) explore either a homogeneous gas, which can be
related to a harmonically trapped gas through the use of the
local density approximation, or else a gas in a spherically
symmetric oscillator trap. Although these studies can lead to
interesting predictions of phenomena in such a system; experi-
mentally, the gas is often held in an anisotropic cigar-shaped
trap.6-10 With that in mind, in this study we introduce a simple
variational treatment of the problem in which the behavior of
the gas is described by two collective coordinates that can be
thought of as parameterizing the overall longitudinal and
transverse spatial extent of the gas.

The starting point for this study is akin to the hyperspherical
K-harmonic method presented in refs 17 and 18 in which the DFG
was described by a set of 3N - 1 angular coordinates on the surface
of a 3N dimensional hypersphere of radius R where N is the total
number of particles in the system. To incorporate an anisotropic
trap in that formulation would require a very high order in
hyperspherical harmonics, and would result in a complex system

of coupled 1D differential equations. To avoid these complications
here we implement a hypervectorial formulation, which is based
on the division of the total 3N dimensional space into two
physically meaningful subspaces, the set of all transverse coordi-
nates, and the set of all longitudinal coordinates. The division can
be thought of as describing the gas by 3N - 2 angular coordinates
on the surface of a 3N dimensional hyper-cylinder with height Rz

and cylindrical radius RF. These coordinates have been used
previously to describe a Bose-Einstein condensate in cigar-shaped
and completely anisotropic traps in refs 19 and 20. Their method
is extended in this paper to describe the degenerate Fermi gas.
While this simple description is not perfect, the goal is to create a
simple intuitive picture that reproduces the qualitative meanfield
behavior of the system and constitutes an initial step that can be
extended in future work.

This paper is arranged as follows; In Section I we introduce
the hypervectorial method. In Section II we apply this method
to the case of the two-component degenerate Fermi gas with
density-dependent, zero-range interactions and analyze the
resulting potential surfaces. In Section III we predict the ground
state energy and average spatial extent of the system. Section
IV uses the potential surface to extract the frequency of low-
energy excitations. Section V provides a brief summary and
discusses avenues of future inquiry.

I. The Hypervectorial Method

The use of hyperspherical coordinates is well suited to an
isotropic oscillator trap because the trapping potential is
proportional to the square of the hyperradius.17,18,21 This is not
the case in an anisotropic trap, where different Cartesian
coordinates in the trap are associated with different oscillator
frequencies. This study will deal with a cylindrically symmetric
cigar-shaped trap, but with minor modifications the methods
presented here carry over to a completely anisotropic trap. The
Hamiltonian for this system is given by

where ωz and ω⊥ are oscillator frequencies in the longitudinal
and transverse directions, respectively. Here xi, yi, and zi are
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the Cartesian coordinates of the ith atom, and rij is the
interparticle distance between particles i and j.

Now consider two collective coordinates, Rz and RF, given
by the rms longitudinal and transverse size of the gas,
respectively, that is,

The remaining 3N - 2 spatial degrees of freedom in the gas
are described by angles. The first N angles are merely the
cylindrical polar angles for each atom {φi}i)1

N , while the
remaining 2N - 2 angles are given by22,23

where 0 e �i, Ri e π/2 and 1 e i e N - 1. The exact
parametrization is arbitrary, as these angles will not be used
directly, but they are given here for completeness. Collectively
these 3N - 2 hyperangles will be referred to as Ω ) (Ω1, Ω2)
where Ω1 corresponds to the sub-hyperangles describing the
transverse coordinates and Ω2 the longitudinal sub-hyperangles.
The differential volume element dΩ associated with these
coordinates can be extracted using the procedure described in
Section Two of ref 23. In these coordinates the sum of the
Laplacians in eq 1 can be written in terms of the hypervectorial
coordinates as:22,23

where Λj ⊥
2 and Λj z

2 are given by22

The sums over i and j (l and m) run over all Cartesian
coordinates in the longitudinal (transverse) subspace. Combining
eqs 2,3, and 6, the Hamiltonian in eq 1 can be rewritten in terms
of the hypervectorial coordinates:

where M ) Nm.
The key to the hypervectorial method presented here is similar

to the K-harmonic approximation,17,18 which is based on a
variational ansatz wave function,

where Yλ⊥λz µ(Ω1, Ω2, σ1, σ2, ..., σN) is the lowest allowed
hyperangular eigenstate for N noninteracting fermions in an
anisotropic harmonic trap. Here (σ1, σ2, ..., σN) are the spin
coordinates. By definition, Yλ⊥λz µ satisfies the eigenvalue equations

The subscript µ enumerates the often quite large number of
degenerate states for a given λ⊥ and λz. It would be convenient
if Yλ⊥λzµ(Ω1, Ω2, σ1, σ2, ..., σN) is merely a product of the two
eigenfunctions of Λ⊥

2 and Λz
2, but this is not the case. The

permutational symmetry of the system mixes subhyperspherical
harmonics together. Fortunately, examining eq 7 with Uint(rij)
) 0, it is clear that the anisotropic oscillator is separable in the
hypervectorial coordinates.

In ref 17 it was shown that the lowest hyperspherical
harmonic for an isotropically trapped system can be written in
terms of a Slater-determinant of independent particle wave
functions. Because the noninteracting system is separable in
hypervectorial coordinates, the hyperangular behavior of the
noninteracting system in an anisotropic trap can be written in
the same way, that is,

Here D(rb1, rb2, ..., rbN, σ1, σ2, ..., σN) is a ground state Slater-
determinant of independent particle states, that is:
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where the sum runs over all permutations, P, of the N spatial
and spin coordinates, Ln

γ(x) is a Laguerre polynomial, Hn(x) is
a Hermite polynomial, l⊥ ) (p/mω⊥)1/2, lz ) (p/mωz)1/2, and
An⊥inzimi

is a normalization constant. In eq 11, K⊥ ) λ⊥ + N -
3/2, Kz ) λz + N/2 - 3/2, and G�K⊥

⊥ (RF) and G�Kz
z (Rz) are the

subhyperradial behavior of the noninteracting anisotropically
trapped gas given by17,18,22

Here, L⊥ ) l⊥/(N1/2), Lz ) lz/(N1/2) and A�K⊥
⊥ and A�Kz

z are
normalization constants. It is interesting to note that, despite
appearances, eq 11 is independent of the oscillator lengths l⊥
and lz.

The subhyperangular momentum eigenvalues, λ⊥ and λz, from
eqs 9 and 10 are determined by the number of oscillator quanta
in D(rb1, rb2, ..., rbN, σ1, σ2, ..., σN) in the longitudinal and transverse
directions respectively:

For this treatment we will only consider nondegenerate, filled
energy shells in the large particle number limit, but the treatment
can be extended to include finite particle numbers and open
energy shells. The nondegenerate ground state is found by filling
every state in the noninteracting system up to a Fermi energy,
εF. In the large N limit, which will be the focus of this paper,
the Fermi energy is given in terms of the number of atoms by

where it has been assumed that there are enough atoms to
occupy many longitudinal and transverse modes, that is, the
system is still three-dimensional. The energy of the noninter-
acting system is given in terms of the hyperangular momentum
quantum numbers as

In the large N limit, this becomes

The hyperangular momentum quantum numbers, λ⊥ and λz, in
the large N limit are given by

To employ the variational principle the hyperangular expecta-
tion value of the Hamiltonian given in eq 7 must be taken,
leaving an effective Schrödinger equation in the collective
coordinates, RF and Rz:

Here, F(RF, Rz) has been multiplied by a factor of
Rz

(N-1)/2RF
(2N-1)/2 to remove first derivative terms.

To avoid divergences in the large N limit, it is convenient to
rescale the effective Schrödinger equation by noninteracting
energy and lengths:

where ENI is the noninteracting energy, and 〈RF
2〉NI is the

expectation value of the transverse collective coordinate squared
given in the large N limit by

with γ ) ωz/ω⊥. In the large N limit, with this rescaling, eq 17
becomes
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Here m* ) MENI〈RF
2〉NI/p2, and the effective potential,

Veff(RF′ , Rz
′), is given by

with γ ) ωz/ω⊥. All that remains is to calculate the hyperangular
expectation value of the interaction, after which we will have
an effective 2D potential surface describing the motion in
(RF′ , Rz′).

Interaction Matrix Elements. To find the effective hyper-
vectorial potential, a method for evaluating the interaction matrix
element in eq 20 must be developed. The fixed RF and Rz matrix
element in eq 20 can be rewritten using δ-functions in RF′ and
Rz′ as

A convenient way of expressing the δ-functions in this
expression is

Combining eqs 21, 22, and 23 and recalling that the definition
of Yλ1λ2µ from eq 11 is independent of the oscillator lengths gives

where Dleff⊥leffz
(rb1, rb2, ..., rbN, σ1, σ2, ..., σN) is a ground state Slater-

determinant wave function of N independent noninteracting
fermions in an anisotropic cigar-shaped trap with effective
oscillator lengths,

Here, 〈Rz
2〉NI is the expectation value of the square of the

longitudinal collective coordinate:

The subscript 3N in eq 24 indicates that the matrix element
is taken over all spatial and spin degrees of freedom.

II. Density-Dependent Interactions

Now that interaction matrix elements can easily be calculated,
we specify what interaction this will be applied to. The simplest
choice would be that the standard zero-range Fermi-pseudopo-
tential. Unfortunately, the overly singular nature of the δ-func-
tion interactions leads to an unphysical collapse of the two-
component Fermi gas when the scattering length is sufficiently
large and negative.17 To avoid this we will employ the density-
dependent zero-range interactions presented in ref 24 and applied
within the K-harmonic approximation in ref 18 in which a zero-
range interaction is used whose strength is dependent on the
density of the gas.

where a is the two-body s-wave scattering length and the Fermi
wavenumber kf ) kf(rb) ) (6π2F(1)(rb))1/3 is defined in terms of
the single spin component density, F(1)(rb).25 The effect of the
density dependent interaction is to impose the appropriate short-
range behavior on clusters of particles in a manner similar to
that of ref 26. In other words, if a cluster of particles is very
close together with rms radius much less than the scattering
length, the effective interaction energy they experience is the
same as if the scattering length was infinite. This short-range
behavior is extracted in ref 24 by considering a two particle
system, but the general method may be extended to a larger
number of particles. We approximate the dimensionless renor-
malized function �(kfa) from ref 24 with
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Two of the fitting parameters A and B are found by fitting
the asymptotic behavior of �(kf a) as kf a f ( ∞, which are
given in ref 24 by

Once A and B are determined, the remaining constants C and
D in eq 28 are determined by matching the Fermi pseudopo-
tential in the |kfa| , 1 limit,27,28 that is,

In the large N limit, the interaction matrix element can be
rewritten in terms of the density, Fleff⊥leffz

(1) (F, z), of a single spin
component in the ground state of the effective oscillator.18,29

This density is given by30

where µ ) (3N)1/3 is set by Fleff⊥leffz

(1) (rb) d3r ) N/2.
Evaluating the expectation value in eq 24 with Uint given by

eq 27 and kf(r) ) (6π2Fleff⊥leffz

(1) (rb))1/3 gives the effective hyper-
vectorial interaction potential

One should note that the function f(x) is the same as in the
hyperradial effective potential of ref 18. Putting everything
together yields a total effective hypervectorial potential,

An example of the effective potential is shown in Figure 1
for a trap ratio γ ) 1/3 and an interaction strength of kf

0a )
-1.

III. Ground State Behavior

Here we analyze the behavior of the effective hypervectorial
potential for various values of kf

0a. Figure 2 shows contour plots
of Veff for evenly spaced values of kf

0a from -12 to 12 for a
system with trap ratio γ ) 1/3. For attractive interactions (a <
0), the minimum is seen to be pulled into the center as the gas
pulls in on itself. For repulsive interactions (a > 0) the minimum
is pushed out away from the center. It is also interesting to see

the low lying contours behavior as it gets twisted toward the
origin for attractive interactions and away for repulsive. This
behavior will be studied in more detail later.

In this section the ground state energy and average squared
collective coordinates for the DFG in an anisotropic trap are
found, that is, E/ENI, 〈Rz

′2〉 and 〈RF
′2〉. Following the same logic

as in the hyperspherical K-harmonic method,18 these quantities
can be found by minimizing Veff, that is, by solving (∂Veff)/
(∂RF′) ) (∂Veff)/(∂Rz′) ) 0. The minimum of eq 32 cannot be
found analytically, but because the interaction is a function of
the product Rz′RF

′2 only, the relationship between the minimum
longitudinal coordinates, Rzmin′ , and transverse coordinate, RFmin′ ,
can be found:

This indicates that, under the assumptions used here, the DFG
with density dependent interactions will always maintain the
same aspect ratio. This behavior is likely due to the fact that
the hyperangular behavior was frozen to the noninteracting
behavior. In other words, oscillator quanta cannot be exchanged
between the longitudinal and transverse directions, that is, λz

and λ⊥ are fixed. If a more complex formulation were to be
used, it is likely that the aspect ratio of the gas would change
with repulsive and attractive interactions. For instance, λz and
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Figure 1. The dimensionless effective hypervectorial potential surface
is shown plotted as a function of RF′ and Rz′ for an interaction strength
kf

0a ) -1 and a trap ratio of γ ) 1/3.

Figure 2. Contour plots of the dimensionless effective hypervectorial
potential are shown plotted as a function of RF′ and Rz′ for an interaction
strength varying from kf

0a ) -12 to 12 (a-i, respectively) and a trap
ratio of γ ) 1/3.

Rzmin′ )
RFmin′

√2γ
(33)
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λ⊥ could be considered to be functions of the hypervectorial
coordinates R⊥′ and Rz′ in the large N limit instead of being fixed
by the noninteracting behavior. This extension is beyond the
K-harmonic approximation and thus outside the scope of this
study.

Inserting eq 33 into eq 32 yields

This is precisely the same functional form as the effective
potential found for the hyperspherical treatment in an isotropic
trap, meaning that large N expectation for E/ENI and 〈RF

2〉/〈RF
2〉NI

in the ground state,shown in Figures 3 and 4, will be exactly
the same as E/ENI and 〈R2〉/〈R2〉NI from ref 18. The average
longitudinal rms radius, 〈Rz

2〉/〈RF
2〉NI can be extracted using eq

33. Repulsive effective interactions (a > 0) should be considered
with a grain of salt because the renormalized description of the
interactions used here is accurate only if the real two-body
interactions are purely repulsive. This means that for this method
to be accurate the gas must somehow be prevented from
coalescing into molecular dimer states. Further the variational
wave function in eq 8 does not incorporate these complex
correlations. In other words, with the present initial formulation,
we can only consider a gas of atoms, but not of molecules.
Figures 3 and 4 also show that the ground state energy and rms

radius predicted using the hypervectorial method are in excellent
agreement with those predicted using the Hartree-Fock method
with the same density-dependent interaction.24

IV. Low Energy Excitations

One of the benefits from the hyperspherical K-harmonic
approximation of refs 17 and 18 was the simple extraction of
the low-lying radial excitations. Similarly, in the hypervectorial
picture, low lying excitations can be extracted as well. The
difference is that now there are two distinct types of excitation
corresponding to transverse and longitudinal breathing modes.
In the noninteracting limit these two modes decouple, but as
interactions are turned on, excitations in the two trap axes
become coupled. This behavior can be visually understood by
examining the ellipses made by the low lying contours shown
in Figure 2.

A more quantitative view of the low lying excitations can be
extracted by normal-mode type of analysis which begins by
approximating the effective potential about the minimum as a
harmonic oscillator potential,

where EGS is the ground state energy found by minimizing the
effective potential. The oscillator frequencies about this mini-
mum can be extracted by finding the eigenvalues of the Hessian
matrix in eq 35

where ν1 and ν2 are the eigenvalues. These breathing modes
are in units of the noninteracting energy; to get back to
conventional units, the frequencies must be multiplied by ENI/
p. From eq 19, m* ) mENIN〈RF

2〉NI/p2, and noting that
N〈RF

2〉NI ) 2l⊥
2ENI/3pω⊥ gives

The eigenvectors corresponding to the eigenvalues in this
equation have a direct meaning, as the directions in which the
gas oscillates. Roughly, one of these frequencies corresponds
to the transverse breathing mode, while the other to longitudinal.
We will take ω1 (ω2) as the transverse (longitudinal) mode, that
is, in the noninteracting limit ω1 ) 2ω⊥.

Figures 5 and 6 show the two breathing mode frequencies as
a function of kf

0a for trap ratios varying from γ ) 0.05 to γ )
0.95. Again, it should be mentioned that both the variational

Figure 3. The ground state energy of the DFG in units of the
noninteracting energy predicted by the hypervectorial method (solid
line) is plotted versus arctan (kf

0)/aπ and compared with that predicted
by the HF method with 2280 atoms in an isotropic trap (circles).24

Figure 4. The average squared transverse rms radius of the two-
component DFG ground state in the large-N limit, divided by the
noninteracting value for this quantity, is plotted vs arctan (kf

0)/aπ. Also
shown are the values predicted by the HF method with 2280 atoms in
an isotropic trap (circles).24

Vint(RF′ , Rz′ )
RF′

√2γ)
ENI

) 1

2RF
′2 + 1

2
RF

′2 + 256

9π2RF
′2 f (kf

0a

RF′ )
(34)

Veff(RF′ , Rz′)
ENI

≈
EGS

ENI
+ 1

2
[RF′ - RFmin′ , Rz′ - Rzmin′ ] ×

[ ∂
2Veff

∂RF
′2

∂
2Veff

∂RF′∂Rz′

∂
2Veff

∂RF′∂Rz′
∂

2Veff

∂Rz
′2 ][RF′ - RFmin′

Rz′ - Rzmin′ ] (35)

ω1 ) � 1

m/
ν1

ω2 ) � 1

m/
ν2

ω1
B ) �3

2
ω⊥√ν1

ω2
B ) �3

2
ωz√ν2

(36)
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trial wave function and the density dependent interaction cannot
describe a gas of bosonic dimers for positive scattering lengths.
There are several worrying things that can be seen in the
predicted behavior of the breathing modes. First, in the unitarity
regime, kf

0af-∞, both the transverse and longitudinal breathing
modes are greater than the noninteracting frequencies for γ < 1,
and the frequencies in this regime depend on γ. This is in
disagreement with the unitarity prediction from superfluid hydro-
dynamic models of ω1

B ) (10/3)1/2ω⊥ and ω2
B ) (12/5)1/2ωz.31

Second, and most importantly, the frequencies predicted here
differ, both quantitatively and qualitatively, from those found
in experiment.32 These disagreements are likely due to the overly
simplistic variational trial wave function, eq 8, used in the
hypervectorial picture. By fixing the hyperangular behavior to
that of the noninteracting Fermi gas, the wave function cannot
take into account the higher order correlations, such as BCS-
like pairing, that are present in the system. It should be noted
that the K-harmonic method does produce excellent agreement
with other predictions33 for breathing mode frequencies in the
unitarity limit for isotropically trapped gases.

V. Summary

In this paper we have presented an extension of the K-
harmonic approximation of refs 17 and 18, which incorporates
the hypervectorial formulation of ref 19 applied to an aniso-
tropically trapped degenerate Fermi gas. By fixing the subhy-
perradial coordinates, RF and Rz, a simple 2D effective potential
was extracted, allowing for much of the intuition of simple
Schrödinger quantum mechanics to be brought to bear on the

complex many-body system. The resulting ground state energies
were seen to be in perfect agreement with those predicted by
the K-harmonic method in an isotropic trap and are in good
agreement with those predicted by the Hartree-Fock method.
Analysis of the rms spatial extent of the gas showed that, under
the hypervectorial approximation presented here, the gas
maintains the same aspect ratio throughout the crossover regime.
This is likely due to the unphysical assumptions in the
distribution of oscillator quanta in the variational wave function,
and merits further investigation. Finally, by employing a simple
normal-mode analysis, the low energy excitation frequencies
of the gas were extracted. While these do not agree with current
theoretical predictions31,34 or experimental results,32 they do
provide an example of the intuitive nature of the method.

While this study does not quantitatively resolve all difficulties,
this is seen as a stepping-off point for future studies that
hopefully will begin to incorporate the more complex nature of
this system. This paper may also be seen as a simple example
of the hypervectorial method. While the idea was applied here
to a degenerate Fermi gas in an anisotropic trap, this is by no
means the only possible application of the technique. For
instance, in a Fermi gas of distinguishable particles, for example,
a Fermi gas where the components have unequal masses,
unequal numbers, or different trapping frequencies, the hyper-
vectorial approach can be applied with each part of the
hypervector corresponding to a subhyperradius for each com-
ponent in the gas. This might allow for higher order fluctuations,
phenomena like phase separation, or a “beating” mode where
two components oscillate out of phase.

Further applications can be envisioned in the realm of few-
body physics. For instance, fixing two total spatial extents in a
body-fixed three-body system leaves a simple 1D Schrödinger
equation in the remaining degrees of freedom.35 Similarly, the
body-fixed four-body problem can be reduced to a 3D Schrö-
dinger equation,36 the solution to which can then be carried out
using current computation methods.
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